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The full sequence of the bound states for a very floppy triatomic complex, Ne2H- in its ground electronic
state, are initially computed for the rotationless situation and employing a variational approach that expands
the total nuclear wave function over a large set of symmetry-adapted, distributed Gaussian functions and
employs accurate atom-atom potential energy data. The results are tested for numerical convergence, compared
with the behavior of both its diatomic fragments, Ne2 and NeH-, and further compared with the results for
the Ne3 case. The computational analysis is extended to the production of the rotational constants for the
very nonclassical ground state vibrational configuration by making use of the previous findings. The method
is shown to provide us with several illuminating details on the nanoscopic internal dynamics of this very
weakly bound quantum aggregate.

I. Introduction

The capability of obtaining structural information on the
internal motion of few-atom systems, from conventional, small
polyatomic species such as H3

+ and H2O1,2 to the more weakly
bound van der Waals complexes,3 has tremendously increased
over the last years due to the combined improvements on both
the computational tools that can be employed4 and the experi-
mental findings on the spectral structures of the gaseous species.5

The relevance of both sets of data on several areas of physical
chemistry has also correspondingly increased, as witnessed by
their ubiquitous presence in the analysis of molecules in space,
just to mention one example.6

Despite all the recent progress, however, it still remains
difficult to devise a routine procedure for obtaining all the
possible bound vibrational states of a nonlinear aggregate where
large amplitude motions dominate the spectrum and where the
presence of weak interactions between the partners strongly
reduces the presence of large energy spacings between different
internal modes.7

These difficulties are particularly prominent when one deals
with complexes that contain the lighter rare gases (RGs), e.g.,
helium and neon, and additional partners that exhibit also weak
interactions with such RGs, the H- species being the one of
specific interest in the present study.8

In such instances, in fact, an interesting combination of two
opposite factors occurs to modify the interaction in the smaller
aggregates, in the sense that the long-range attractions due to

charge polarization within the neutral partners (a second-order
effect) extend the range of action of the intramolecular potential,
whereas the negative ion causes short-range repulsion effects
with the other RG atoms, thereby creating shallower well depths
among partners. It is the interplay between such features that
will be the interest of the present study, where we shall endeavor
to describe the full bound state structure of a floppy triatom
like Ne2H- and we shall further extract the rotational constants
for such an unusual species from the results of our treatment.

Our method of choice for the present study shall be the
variational approach described by the distributed Gaussian
functions (DGF) computational method, extensively tested by
us on several floppy triatomic aggregates (see below), which
will be employed within an accurate control of its convergence
capabilities. We shall endeavor to prove in what follows that
such a simulation method is indeed well suited for the structural
analysis of these “difficult” complexes.

This work is structured as follows: in section II we describe
the potential energy surface (PES) of the Ne2H- used in the
present calculation, followed by a survey of the computational
methods we adopted. Our results will then be discussed in
section III followed by our conclusions.

II. Computational Methods

A. Interaction Forces. The PES for Ne2H- is described as
the simple addition of accurate atom-atom interactions.9 We
use a coupled-clusters-single-and-double (triple) [CCSD(T)]
potential energy point calculation, fitted via a four-term Morse-
type function10 to obtain the Ne2 ground state potential; the same
potential had been employed in our previous extensive study
on the Ne3 system11 and supports three vibrational bound states
(with zero total angular momentum,J ) 0) at -16.18,-2.75
and -0.0074 cm-1, as reported in ref 11. The NeH- ground
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electronic state has been computed again at the CCSD(T) level12

and it has already been employed in our study on the effects of
the H- impurity in rare gas clusters.9 It supports two rotationless
vibrational states, the first located at-12.51 cm-1 and the
second at-1.08 cm-1.

The two potential energy curves (PECs) are reported in Figure
1; they show a comparable well depth (the difference between
them being only 2.5 cm-1) but marked differences both in the
equilibrium distances of the dimers and in the long-range
behavior of the potentials. This is described by the usual
dispersion forces that vanish asR-6 in the Ne-Ne case, whereas
in the NeH- system the interaction dies out more slowly due
to the charge-induced dipole interaction with itsR-4 behavior.
As already discussed in ref 9, the NeH- dimer is more weakly
bound when compared with Ne2, this being chiefly due to the
small mass of H- and not to the still negligible changes in their
corresponding potential well depths. It is also the reason we
obtained a smaller number ofJ ) 0 vibrational bound states
supported by NeH- as opposed to those present for Ne2. It is
an interesting topic in itself to also analyze the spectrum obtained
for Ne2H- in comparison with that obtained for the Ne3

system,11 an aspect of the problem we will further discuss in
section III.A.

B. DGF Method. As mentioned in our Introduction, we
selected to employ here a variational approach that expresses
the system’s Hamiltonian and the wave functions in terms of
atom pair coordinates and is based on the use of an expansion
over Gaussian functions to construct the relevant basis set.

The method has been introduced by us earlier13,14and already
used in several studies of trimers with three and two identical
particles9,15-17 where it was shown to be a numerically robust
and accurate method, able to confirm the findings of other, very
different procedures based on, e.g., classical optimization and
diffusion Monte Carlo techniques. The capabilities of Gaussian
basis sets have also been valuably explored by some earlier
work, showing that selected Gaussian basis sets can indeed
provide efficient representations for the description of the
configuration space of a classical or quantum system.7,18-22 We
recently reviewed and further optimized our DGF method to
ensure its additional numerical reliability, as shown in the works
on Ne3

11 and Ar3.23

For the trimer with two identical particles the Hamiltonian
can be expressed as

whereR3 is the Ne-Ne distance andRi, i ) 1, 2, define the
two Ne-H distances. The kinetic energy operatorT in such
coordinates has already been given in detail before15 and we
shall therefore not repeat it here. Following these coordinates,
the phase space volume element is

If Ψ is one of the eigenstates of the Hamiltonian, the
transformation

leads to the standard normalization condition,

The required wave functionΦ can then be obtained as an
eigenfunction of the following Hamiltonian

where the kinetic energy operatorsT1 andT2 within the above
symmetry Hamiltonian were explicitly given in ref 24.

The total wave function is then expanded in terms of
symmetrized basis functions

with

for the two-identical-particle system. Here,j denotes a collective
index such asj ) (l e m; n). Each one-dimensional function
æp is chosen to be a DGF22 centered at theRp position

whereAp is a parameter defining the width ofæp.13 Basically,
eachφj(R1,R2,R3) function describes a triangular configuration
in such a way that it represents all the possible triangular
arrangements (according to the exchange of the identical
particles) formed when theR1, R2 andR3 sides are equal to the
centers of the Gaussian functionsRl, Rm andRn, respectively.

To fulfill the triangle requirement, and as discussed in detail
in ref 11, the productælæmæn will belong to the basis if the
corresponding DGF centers verify

The DGF centersRp in eq 8 are chosen to be equally spaced
along theR1, R2 andR3 grids and, calling∆ such constant step
between two neighboring Gaussians, the DGF centers are
defined by the formula discussed in ref 11:

Figure 1. Ground electronic state potential energy curves for NeH-

(solid line) as calculated in ref 12 and Ne2 (dashed line) as calculated
in ref 10. The potential values are in cm-1 and theR values ina0.
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P∈S2

P[æl(R1) æm(R2)]æn(R3) (7)
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which ensures, for each∆, that we can obtain the optimal basis
set corresponding to the “badness” indicatorW(R1,R2,R3)
becoming as close to unity as possible (see ref 11). Such operator
is defined as follows:

and can be easily represented in terms of DGF as

wheresnn′ is the overlap of two Gaussian functions centered at
Rn andRn′, erf(x) is the error function and, finally,Ann′ andR†

nn′
are the width and center respectively of the product of two
Gaussian functionsænæn′.

The geometrical features of the vibrational bound states can
be extensively analyzed by means of the pair distribution (PD)
functions

and by the use of the “pseudo-weights”Pj
k 11,13associated with

each triangular configurationφj (eq 7) in the expansion of the
total wave function for thekth bound state (eq 6). Such quantities
naturally arise from the normalization condition of the wave
functions

and enable us to assess the importance of the different triangular
configurations (linear, isosceles, equilateral and scalene) that
are present in a classical description of the triatomic system.
The latter can be further used to calculate the expectation values
of different observables in a straightforward way

where in the integrations involved we have assumed that the
magnitudex, depending on the three pair coordinates, has been
replaced by a mean value corresponding to the triangular
configuration described by theφj functions. We can thus further
characterize the bound states of the trimer by evaluating, for
instance, the average values of the interatomic distances in the
dominant structures, thereby gaining more detailed information
on the nuclear motion in the ground and excited states. As a
specific application of interest, we will show in the next section
how we can use the pseudoweights to calculate the rotational
constants for such floppy triatomic systems.

C. Rotational Constants.We started our present analysis
with the improved formulas for the rotational constants, denoted
by A, B andC, as derived by Ernesti and Hutson.25 The constants
are calculated from expectation values involving moments of
inertia defined in an axial system that satisfies the Eckart
conditions.26 In our case such moments of inertia are ap-
proximately describing the principal ones. As discussed in ref
25, in situations where one has T-shaped complexes formed by
an atom and a heavy diatom (as is the case of the present work),
the improved

formulas allow for an optimum separation of vibrational and
rotational motions, separation that is only approximate if the
inertial tensor is inverted in an axial reference set that has one
inertial axis fixed along the intermolecular vector.

The formulas discussed in ref 25 are obtained via the Jacobi
coordinatesRjac, r andθ, whereRjac is, in our system, the vector
taken from the center of mass of Ne2 to the H- impurity, r is
the vector associated to the Ne-Ne distance andθ denotes the
angle betweenr and Rjac. In these coordinates we can define
the two moments of inertiaINe2 ) µNe2‚r2 and IH--Ne2 ) µ‚
Rjac

2, whereµNe2 is the reduced mass of the Ne2 dimer (hence
equal to half the neon mass) andµ ) mH-‚mNe2/(mH- + mNe2),
beingmNe2 ) 2‚mNe.

According to the procedure suggested in ref 25 we need first
of all to define a reference geometry, which is taken to be the
equilibrium (T-shape) structure. The formulas providing the
expectation values of the rotational constants include in fact,
together with the moments of inertiaINe2 and IH--Ne2, simple
trigonometric functions of three anglesR, â andθ (see below).
However, whereasθ is the Jacobi angle already defined above,
R needs knowledge of the reference geometry to be calculated
and it is given, for a T-shaped reference geometry, by

where the moments of inertiaINe2

0 andIH--Ne2

0 are calculated for
the reference geometry. The angleâ is then given by the sum
θ + R. The rotational parameters are then given (in atomic units)
as25

and converted into MHz under multiplication by 4.134137×
1010/2π.

Within our DGF formalism, the Hamiltonian and the wave
functions are expressed in terms of interatomic distances.
However, in a system like Ne2H-, which has two identical
particles, the Jacobian coordinateRjac coincides with one of the
medians of the triangle identified by the positions of the three
atoms, more precisely with the one that joins the vertex occupied
by the H- species to the midpoint ofr (which represents the
distance between the two remaining neon atoms). Hence, for
each basis functionφj(R1,R2,R3) in eq 7, corresponding to one
of the “quantum triangles” that describe the total wave function
Φ(R1,R2,R3), we can associate the following Jacobi coordinates

R ) arctan( δ cosθ
1 + δ sin θ) δ2 )

INe2
INe2

0

IH--Ne2
IH--Ne2

0
(16)

A ) 1
2〈µRjac
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2 cos2 R + µNe2

r2 cos2 â

µRjac
2 µNe2

r2 sin2θ 〉 (17)

C ) 1
2〈 1

µRjac
2 + µNe2

r2〉

Rjac ) 1
2
(2R1

2 + 2R2
2 - R3

2)

r ) R3 (18)

cosθ )
Rjac

2+(R3

2 )2

- R2
2

Rjac·R3

W(R1,R2,R3) ) {0, |R1 - R2| e R3 < R1 + R2 holds
1, otherwise } (11)

I(ll ′,mm′,nn′) ) 〈æl(R1) æm(R2) æn(R3)|W| ×
æl′(R1) æm′(R2) æn′(R3)〉

) 1
2
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∞∫0

∞
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æm′(R2)·{2 + erf[xAnn′(|R1 - R2| - R†
nn′)] - erf[xAnn′(R1 +

R2 - R†
nn′)]} (12)

D(k)(R1) ) ∫∫|Φk(R1,R2,R3)
2 dR2 dR3 (13)

1 ) 〈Φk|Φk〉 ) ∑
j

aj
k〈Φk|φj〉 ) ∑

j

Pj
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〈x〉k ) ∑
j

aj
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j

Pj
kxj (15)
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From eqs 17 notice that it is fully equivalent to use eitherR1 or
R2 in the expression for cosθ, because the resultingθ angles
are supplementary and hence they have the same value of sin
θ (which appears in the formulas 17).

The scheme we follow to calculate the rotational constants
is therefore defined as follows:

1. We calculateINe2

0 and IH--Ne2

0 for the reference (equilibri-
um) geometry using the average values ofRjac andr previously
found via the pseudoweights (see eq 15) of the DGF calcula-
tions;

2. For each “triangular” basis function we calculate the
associated Jacobi coordinates and, by employing the equilibrium
moments of inertia and the anglesR (through eqs 16) andâ,
we can then calculate the rotational constants for each basis
function through the formulas given in ref 25

3. By going again through eq 15, we calculate the average
rotational constants for the bound state in question.

Before proceeding to the calculation of the rotational constants
for the Ne2H- trimer ground state, we think it safer to first check
the ability of the DGF method to provide reliable results for a
system that is already known. Hence, we chose to analyze the
Ne2Kr complex for which the rotational constants relative to
the ground vibrational state have been already published in ref
27. We employed the same potential models used there to
describe the Ne-Ne and the Ne-Kr interactions, namely the
HFD-B functions for the Ne2 28 and for the NeKr.29 Not being
here our aim to achieve an accurate determination of the
rotational constants of Ne2Kr in its ground state, we limit
ourselves to use those pair potentials in their unmodified form
and we did not use either of the three-body contributions; hence
our results have to be compared with those shown in the first
column of Table 1 of ref 27. For the sake of clarity we report
again the latter data in the first column of our Table 1, together
with a convergence test with respect to the spacing∆ between
two neighboring Gaussians. A smaller value of∆ is required
to find acceptably converged rotational parameters when
compared to the quality of the level of convergence for the total
energy. This makes the calculation of the rotational constants
for the ground state computationally accessible within a fairly
high degree of accuracy. We know, in fact, that the excited states
are always more diffuse over the physical space, thereby
requiring a more extended grid to be correctly described and
therefore too high a number of closely spaced Gaussian
functions to realistically map the necessary space: their corre-
sponding rotational constants would hence become computa-
tionally very costly.

We clearly see in Table 1 that the agreement with the results
of ref 27 is quite good, with a difference that is at most 7 MHz
for the A constant and less than that for the other two constants.

III. Results and Discussion

A. Energetics and Structural Properties of the Bound
States.We have carried out a complete calculation of the bound

states of the Ne2H- trimer that includes its detailed energetics
and the geometrical characterization of all its bound states. In
Table 2 we report the energies and the values of the badness
indicator for each of the 13 bound states we found. The results
refer to a basis set composed by 50129 functions, built out of
52 DGFs equally spaced by a∆ ) 0.5a0 over the three atom-
atom distances. We performed several tests with respect to the
extension of the three (equal) monodimensional grids and to
the step∆, to ensure the quality of the attained convergence
(see ref 11 for a detailed discussion on this subject).

Because of the lower symmetry of the present system, we
are obliged for computational reasons to use more limited basis
sets with respect to our similar study on the more symmetric
Ne3.11 Hence, to map the spatial range necessary to describe
all the present excited states (from∼4a0 up to ∼30a0) the
smallest step∆ we could afford to use was equal to 0.5a0, even
though we performed additional calculations with smaller steps
(and smaller grids) to check the convergence of the energies of
the lower bound states. The latter quantity was always ensured
within the first decimal figures of the values reported in Table
2.

With respect to the spectrum of the Ne3 trimer11 we find that
the replacement of one of the neon atoms with the H- impurity
generates a larger number of bound states (13 versus 11; we
refer here to the calculation in ref 11 that was performed with
the same CCSD(T) potential employed in the present work).
As for the relative stabilities of the component dimers, we find
that the ground vibrational state (withJ ) 0) for the Ne2H- is
less stable than the Ne3 ground state (located at-49.21 cm-1 11):
the stability we are referring to here is that of the two-body
(2B) fragmentation with the consequent loss of one atom (either
the H- for Ne2H- or one neon atom for the Ne3). On the other
hand, if we compare the three-atom species before fragmenta-
tion, we find that the potential resulting from the sum of two
Ne-H- and one Ne-Ne interactions, together with the com-
bination of two “heavy” Ne masses and one “light” H- mass,
is able to support more bound states with respect to the
homogeneous trimer. The balance between the stabilization
brought in via the long-range polarization tail exhibited by the
Ne-H- interaction and the typical destabilizing mass effect
connected to the light H partner leads in this case to the
appearance of two more bound states. Such a hidden balance
can be somehow checked by calculating the spectrum of an
hypothetical cluster formed by three neon atoms interacting
through the Ne2H- PES (i.e., by repeating the calculation for
the Ne2H- trimer but changing the H mass with that of another
Ne atom). We carried out this numerical experiment and found
that the result for such a “model” cluster shows the striking
appearance of around 100 bound states, against the 11 presented
by the real Ne3: it demonstrates the huge stabilizing effect of

TABLE 1: Convergence of DGF Energies and Rotational
Constants for the Ground Vibrational State of Ne2Kr and
Comparison with the Results of Ernesti and Hutson27 for the
Unmodified Ne-Kr Potential a

DGF
ref 27

DGF ∆ (a0) 0.5 0.3 0.2 0.16 0.12
energy (cm-1) -93.664 -93.664 -93.702 -93.703 -93.701 -93.701
A (MHz) 4731.35 4708.10 4735.97 4737.53 4738.40 4738.64
B (MHz) 1677.20 1683.56 1672.38 1672.76 1672.74 1672.75
C (MHz) 1214.14 1212.89 1213.56 1213.59 1213.64 1213.66

a The rotational constants are calculated with respect to the Eckart
reference frame.

TABLE 2: Excited States for Ne2H- and “Badness”
Indicator Relative to the Basis Set with Step∆ ) 0.5a0

k energy (cm-1) badness

0 -43.51 1.00
1 -32.91 0.99
2 -29.40 1.00
3 -26.88 0.99
4 -25.90 0.98
5 -25.45 1.00
6 -24.20 0.99
7 -22.59 0.99
8 -21.82 1.00
9 -20.76 0.99

10 -18.87 0.99
11 -18.49 0.99
12 -17.01 0.99
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the charge-induced dipole interaction part of the present
potential. The light H mass is then conclusively seen to be the
one responsible for the drastic reduction to 13 of the number
of bound states we find for the Ne2H- case.

The radial distribution functions for the bound states are
shown in Figures 2-5. The ground state has aC2V symmetry
and has been largely discussed in our previous work on the
study of the structural and quantum effects from anionic centers
in rare gas clusters.9 The first excited state,k ) 1, already
presents some contributions from linear “asymmetric” configu-

rations, Ne-Ne-H-, as can be inferred from the corresponding
PD functions. The top right panel in Figure 2 shows indeed
one peak in the PD function for the Ne-Ne coordinate and
two large peaks in the PD function for the Ne-H- coordinates.
The single-peak distribution is somehow localized around the
classical equilibrium distance of the Ne2 dimer (equal to 5.98a0

for the potential used in this work; see also ref 9), whereas the
two peaks describing the probability density along the Ne-H-

distances present the local maxima at around 9.5a0 and 15a0, a
result that is compatible with a nearly linear Ne-Ne-H-

structure. Such a finding is consistent with the energy of the
statek ) 1 being sufficiently higher (∼10 cm-1) with respect
to the ground state to account for the partial loss of one Ne-
H- interaction (-12.51 cm-1, see section II.A) and to essentially
rely on the other two PECs of the system to provide a bound
state.

The first collinear symmetric state (with H- in the middle
and aD∞h symmetry) is thek ) 3 state, as can be seen in the
bottom right panel of Figure 2. The PD function for the Ne-
H- distribution peaks around∼9.8a0 (notice that the classical
equilibrium distance for the potential we employ is 8.728a0

9),
whereas the one relative to the Ne-Ne distribution peaks around
∼18.2a0. Again, this finding is consistent with the present energy
results because thek ) 3 state is∼16.6 cm-1 above the ground
state, which is approximately the amount of energy needed to
partially loose one Ne-Ne interaction (see section II.A).

We also notice that the statesk ) 0, 1, 4 and 8 present similar
PD functions relative to the Ne-Ne coordinate, with a single
peak located around the classical equilibrium distance for the
dimer, and a delocalized PD function along the two Ne-H-

coordinates. Such distributions give us a representation of the
involved bound states as complexes formed by a Ne2 dimer
coordinated to the H- species (either in a near-C2V symmetry
or in a near-collinear geometry, as we discussed for the lowest
two bound states).

Additional information, and further confirmations on the
spatial properties of the bound states of the present trimer, can
be obtained by the analysis of the composition of each state in
terms of “triangular” families. In Figures 6 and 7 we report the
contribution, expressed as percentage pseudoweights, of each
possible triangular arrangement within each bound state of the
trimer. We find at a glance that the equilateral configurations
(see Figure 7c) are never significant for the description of the
geometrical shape of a given bound state of the trimer, and that
the T-shape arrangements are those that largely contribute,
together with the scalene configurations, to the geometry of the
ground state. From the average radial distances found for each
triangular type (discussed here only for the ground state and
always calculated through the pseudoweights), we obtain the
values 9.54 and 11.32a0 for the two (interchangeable) Ne-H-

distances in the scalene case and 6.29a0 for the Ne-Ne distance,
against the 10.09a0 (Ne-H-) and 6.26a0 (Ne-Ne) found for
the “tall” isosceles. Hence, the scalene configurations themselves

Figure 2. Distribution functions for the first four bound states of Ne2H-

trimer.

Figure 3. Distribution functions for the states fromk ) 4 up tok )
7 of Ne2H- trimer.

Figure 4. Distribution functions for the states fromk ) 8 up tok )
11 of Ne2H- trimer.

Figure 5. Distribution functions for the top excited bound state of
Ne2H- trimer.
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average to a slightly distorted T-shape form, thus confirming
the expected, and already reported,9 geometrical structure for
the ground state of the present system.

Finally, by the combined analysis of the radial distribution
functions and the energy values of the involved dimers’
vibrational states, we can try a qualitative identification of the
trimers’ rotationless bound states in terms of the physical internal
motions of its components, namely the Ne-Ne stretching and
the bending/stretching of H- with respect to the Ne2 entity. The
k ) 1 can be associated with the excitation of the H--Ne2

motions, whereas it shows no stretching of the Ne2 pair whose
PD function is unchanged with respect to the ground state. The
k ) 2 state can instead be associated with the first excitation in
the stretching motion of Ne2: its PD function shows one node
and the average Ne-Ne distance is located at larger distances
with respect to the ground state. Such assignment is consistent
with the energy value of thek ) 2 state, which is around 14
cm-1 above the ground state, enough to excite the nearly-
undistorted Ne2 dimer to its first excited stretching state (see
section II.A). To reach the second (and last) excited bound
vibrational state of a nearly-isolated Ne2, one would need around
16 cm-1, a condition that is already verified for thek ) 3 state.
The latter state shows indeed a PD function for the Ne-Ne
coordinate largely far away from the equilibrium distance of
the dimer, hence describing a highly stretched Ne2 partner within
the complex. However, thek ) 3 state is dominantly described
by a quasi-linear arrangement of the three atoms with the H-

partner in the middle, which is hardly associable to a complex
with a nearly-isolated Ne2 dimer only weakly disturbed by the
H- species. To conclude this qualitative interpretation of the
spatial properties of the bound states, we notice that the regular
nodal patterns exhibited by the Ne-Ne PD function of the
higher excited states are likely due to the integration that has
been carried out over the other coordinates, because the isolated
Ne2 dimer only possesses three vibrational bound states.

B. Rotational Constants. Following the computational
scheme described in section II.C, we calculated (and show here
in Table 3) the results for the rotational constants of the ground
state of Ne2H- as a function of the step∆ of the Gaussian basis
set. According to the usual convention, we denote the three
constants in decreasing size asA, B andC (notice that in Table
1 we did not follow such convention but the choice of the
authors of ref 27).

Considering the computational difficulty of carrying out
calculations with increasingly smaller values of∆, we used our
best calculated values to extrapolate to the “exact” limit of∆
) 0 the values of the constantsA andB, because they appeared
to be less converged when compared to the essentially converged
C value. For the extrapolation we chose a function given by
the sum of the first three even powers of∆, namely,y ) A0 +
A2x2 + A4x4 + A6x6, and used a standard graphical tool to find
the values of the parameters that minimize the root-mean-square
error. We thus find the valuesAextr ) 23049.30 MHz andBextr

) 4930.55 MHz.
We do not report here (as we did not for the Ne2Kr case in

section II.C) the values of the rotational constants obtained when
Cartesian axes withz alongRjac are used instead of the Eckart
axes. However, it is interesting to comment that, although in
the test case of Ne2Kr the choice of the reference axial system
does not dramatically affect the values of the constants, the same
cannot be said for our present complex, composed of the very
light H mass and two neon atoms. While in the heavier trimer
the constants calculated without the Eckart conditions differ from
the correct ones by at most 12 MHz, in the Ne2H- case, they
can vary even by 50%, stressing the importance to use the
appropriate conditions whenever light masses are involved.

To have a pictorial view of what the rotational levels could
look like once we use the values of the above rotational
constants, we calculate the rotational levels by approximating
the system as a rigid asymmetric top whose energy levels are
expressed in terms of the universal energy functionEJτ(κ)30

In the previous equation,κ is Ray’s asymmetry parameter
defined as (2B - A - C)/(A - C).31 For the ground state of
our systemκ is equal to-0.8749294 (very near to the prolate
limit with κ ) -1) whereas the indexτ is given byτ ) K-1 -
K1. HereK-1 (K1) refers to theK value that the rotating top
would approach in the limit of a prolate (oblate) configuration.30

Values of the universalEJτ(κ) for all levels withJ e 12 and for
values ofκ from 0 to 1 in steps of 0.01 are listed in ref 32. We

Figure 6. Percentage weights of the four possible isosceles arrange-
ments within each bound state of the Ne2H- trimer as discussed in
Table 2. See text for details.

Figure 7. Percentage weight of the two collinear, of the equilateral
and the scalene arrangements to each bound state of Ne2H- trimer.

TABLE 3: Convergence of DGF Energies and Rotational
Constants for the Ground Vibrational State of Ne2H- a

DGF ∆ (a0) 1 0.7 0.5 0.4 0.3
energy (cm-1) -43.03 -43.42 -43.51 -43.51 -43.51
A (MHz) 22765.64 22908.83 22972.95 22997.25 23020.05
B (MHz) 4808.46 4885.49 4915.97 4922.93 4927.90
C (MHz) 3681.33 3708.16 3718.99 3720.41 3721.03

a The rotational constants are calculated with respect to Eckart
reference frame.

E(A,B,C) ) 1
2
(A + C)J(J + 1) + 1

2
(A - C)EJτ(κ) (19)
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used theEJτ(κ) values corresponding toκ ) 0.87, knowing that
EJτ(κ) ) EJ,-τ(-κ),31 even though more accurate values could
be found by interpolation. However, we are interested here in
merely giving a qualitative representation of the lower-lying
rotational structure of the Ne2H- system because we still do
not have any experimental confirmation for its rotational
constants.

We remind the reader that the choice of an axial system that
satisfies the Eckart conditions allows for an optimum separation
of vibrational and rotational motions (see section II.C) and,
indeed, the rotational constants markedly differ in an axial
system not satisfying such conditions, as commented earlier.
In a non-Eckart axial system one should also calculate the effect
on the rotational constants coming from the instantaneous
nonzero angular momentum caused by the vibrational motion.
The Eckart axes are indeed defined as those particular axes with
respect to which the vibrationally induced instantaneous angular
momentum is zero, hence minimizing the rotational-vibrational
coupling, so that the Eckart rotational constants correctly
describe the overall rotational motion. From a theoretical point
of view, the further neglecting of the coupling between different
vibrational states must also be numerically verified, as discussed
earlier33 and will be further presented elsewhere.

We sketch in Figure 8 the relative position of the rotational
levels obtained forJ e 2. We notice there that the top twoJ )
2 levels, associated with differentτ values, are not distinguish-
able on the scale of the figure: their difference is indeed of the
order of 0.0021 cm-1.

We finally notice that, from the present rotational constants
we can define the title system in its ground state as a “slightly
asymmetric prolate top” (SAPT),32 whereA > B ≈ C. Although
the 1200 MHz of difference between theB and C constants
could make this assumption seem too strong, the much larger
value of A with respect toB/C ensures its validity. We can
indeed calculate the asymmetry parameterbp

32 especially
appropriate for a SAPT rotor and defined by

which turns out to be, for the ground state of Ne2H- trimer,
equal to-0.03. Such value forbp might be small enough to
allow us to use the expression for the rotational levels of a
SAPT-like systems, which can be expressed in a more direct
analytical form.32 The rotational energies so obtained differ from
the ones calculated with eq 19 by at most 0.0016 cm-1 for the
J ) 1 states and 0.0063 cm-1 for theJ ) 2 states. However, in

the latter case the SAPT approximation does not allow us to
appreciate the very small splitting between the two highest states
(see above). Obviously, for any possible comparison with
experimental results, the quality of the required resolution will
control the likely acceptance of the SAPT approximation as
outlined above.

IV. Conclusions

We carried out a complete analysis of the ground and excited
states of the Ne2H- trimer atJ ) 0, including both the energetics
and the geometrical characterization of all the bound states.

The presence of the H- impurity, in lowering the total
symmetry of the system with respect to the analogous homo-
geneous rare gas trimer, makes the computational effort more
challenging. In fact, due to symmetry considerations, the same
number of Gaussian functions used to describe each atom-
atom coordinate leads to a higher number of basis functions in
the Ne2H- system than in the Ne3 case. As a consequence, we
cannot use a basis set as dense as the one employed in the
homogeneous rare gas trimer. We nevertheless attained a
satisfying degree of convergence, ensuring the reliability of the
results within the first decimal figure.

We further showed that the presence of the H- impurity
significantly changes the overall PES through the charge-induced
dipole Ne-H- interaction; its stabilizing features are counter-
balanced by the highly destabilizing role of the small mass of
the H-. Hence, the net result is a limited increase in the number
of bound states for the Ne2H- complex to a total number of 13
with respect to the 11 found for the Ne3 trimer.

Furthermore, we supplemented the overall description of the
inhomogeneous trimer by also calculating for its ground state
the average rotational constants that satisfy the Eckart conditions
and, hence, that ensure the optimal separation between vibra-
tional and rotational motions. The DGF rotational analysis
provided reliable results, as confirmed by the comparison with
the previously studied Ne2Kr.27 High-resolution spectroscopy
on the Ne2H-, if it were to become feasible, would therefore
allow one to check the accuracy of the pair potentials we
employed here and to test the validity of the theoretical method
we have been proposing in this and previous studies of floppy
molecular complexes.
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